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Abstract 

This deliverable D2.2 presents the progresses made mostly in the work package 2 (WP2) of the SUSTAIN 

project. It directly related to task T2.2: “System model and design of the probabilistic learning strategy”. 

As stated in the project proposal, the SUSTAIN project envisages two levels of intelligence embedded in 

the target sensor nodes: a distributed intelligence controlled in the cloud and a node-level intelligence 

embedded in each node. In this context, WP2 focuses on the node-level intelligence, which intends to 

embed probabilistic machine-learning models on the node using an efficient hardware accelerator for that 

purpose. Towards this goal, the main objective of task 2.2 is to design a strategy for embedded probabilistic 

reasoning, in terms of model choice and possible hardware implementation. It closely related to tasks in 

WP3 as the node level intelligence is included in the distributed intelligence strategy and implementation. 

The circuit design and implementation containing this probabilistic strategy will be implemented in the 

remaining tasks of this WP, T2.3 (and associated deliverable D2.3) and T2.4 (and associated deliverable 

D2.4).  In this deliverable, we start by depicting the envisaged node intelligence architecture in the 

SUSTAIN node.  Then, we motivate the use of probabilistic models and in particular probabilistic circuits 

(PCs) for edge AI computation (and in SUSTAIN). We will detail our first contribution for more energy-

efficient PC inference on hardware using approximate computing. We then report our progresses in 

parallel projects developing A-core, our own RISC-V processor that can also be used in a future 

implementation of the SUSTAIN node. We summarize our results and give an outlook towards the next 

task in the project.  This deliverable is the first of a series of deliverables related to the node intelligence 

in SUSTAIN. We envisage it as a first step, and a baseline for the future work carried out in the SUSTAIN 

project.  
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1 Summary on project’s objectives and tasks 

1.1 Intelligence in sustAIn: summary of the envisaged solutions 

The sustAIn project envisages two levels of intelligence for the system, as pictured in figure 1: 

1. A Meta-level intelligence (mostly developed in WP3), which will control all nodes in the system and 

choose the main actions/behaviours to be taken depending on the context. This intelligence will run 

in a centralized manner, for instance on a server.  

2. A node-level intelligence (mostly developed in WP2), which will be embedded in each node. The role 

of this intelligence is to gather local information about the current context, to transmit this 

information to the meta-level intelligence. At meta-level, it will be possible to configure the nodes 

so that the system adopts the intended behaviour.  

This WP focuses on developing the node intelligence. In that regard, the node intelligence block will be 

composed of two main parts: 

1. A dedicated machine-learning accelerator to embed the intelligence model. The chosen machine-

learning is a probabilistic machine-learning model, specifically a probabilistic circuit.  

2. A RISC-V processor developed based on the work recently carried out in Aalto University. This 

processor can also be used for other tasks, such as communication or wireless sensing (WP4). It will 

be used to control the node and the accelerator.  

1.2 Contents of this deliverable 

In this deliverable we will go over the main developments in the two blocks composing the node-level 

intelligence: the use of probabilistic circuits as a machine-learning model, and the RISC-V processor that 

can be used as part of the node. First, section 2 motivates and explains the use of Probabilistic Circuits 

(PCs) as a baseline model in the project. The main goal is to obtain accurate, explainable, and hardware-

efficient intelligence for the node. Second, section 3 details our first contribution towards building more 

efficient hardware for PC, using approximate computing. That way, we can reduce the energy inference 

of PCs by 100x-200x, depending on the tolerated error. Third, section 4 reports on advances carried on 

in parallel projects, with the development of Aalto’s own RISC-V processor, A-core.   

Figure 1 - general view of the envisaged intelligence in sustAIn 
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2 The model: probabilistic machine-learning and probabilistic circuits 

2.1 Motivation 

Devices populating the Internet-of-things (IoT), including the devices developed in the context of the sustAIn 

project, have a fundamental trade-off between energy and functionality. On the one hand, we wish to embed 

always more advanced functionalities, in particular embedded AI. On the other, power is becoming a clear 

bottleneck in these devices, and technology will not help as much reducing the power consumption of devices 

I the near future [Alioto17].  

Deep Neural Networks (DNNs) architectures are de facto a standard model for embedded AI, yet they can be 

overconfident in their predictions [Hein19], limited to a single task (requiring retraining for each new task) 

[Ruder17], and even have been characterized as never truly reliable [Marcus20]. As an illustration, consider 

a multi-object detection task on the edge, as depicted in figure 2. A direct application could be multi-digit 

recognition [Stelzner19].  

Using DNNs, the accuracy can be high for training 

samples, yet in real scenarios, the system's accuracy 

may drop as it is affected by various uncertainties. They 

can be e.g., noise in the data (a blurry image), missing 

features (an unusable sensor), or previously unseen 

data. In turns, a DNN is trained for one specific 

conditional distribution, i.e., giving an output according 

to a particular set of inputs. In this case, it could be more 

desirable for the model to encode a joint distribution 

(e.g., jointly model the labels and inputs). In the example 

depicted in figure 2, this means querying for the most probable digit according to the observed object. 

Probabilistic general-purpose reasoning allows for such queries, handling and quantifying uncertainty in a 

principled manner [Koller09]. With this model type, one can, for instance, compute predictions (conditional 

probability of the labels given the inputs) in case of missing values (e.g., in case of corrupted pixels in an 

image) by exactly marginalizing out the missing values. Such a computation is not possible in NNs as only the 

distribution conditioned on all inputs (e.g., pixels) is computable, and one would need to use additional 

imputation methods.  

As a result, there is a need to explore alternative computationally efficient models, allow faithful and 

probabilistic general-purpose reasoning, and integrate well with existing deep NN frameworks. However, 

inferring answers in complex probabilistic models is typically intractable (computationally infeasible). These 

models are represented as Directed Acyclic Graphs (DAGs) with a relatively irregular structure; thus, they 

can't be easily translated into repetitive computation steps [Shah19]. To overcome this limitation, recent 

work on tractable probabilistic models, specifically on probabilistic circuits (PCs) [Choi22], poses a promising 

avenue as PCs 1.) exhibit high expressive efficiency (representational power), 2.) are tractable 

(computationally efficient) for many queries classes by design, and 3.) integrate well with state-of-the-art 

deep learning techniques. 

 

Figure 2 - Example of a probabilistic learning system 
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Probabilistic models In SustAIn? SustAIn envisages the embedded node intelligence as transparent, accurate 

and energy efficient. PCs satisfy these three points: (1) probabilistic reasoning enables to have a level of 

confidence with the model, to take more clear and explainable decisions; (2) PCs have shown promising 

performances on various edge AI tasks (more details below); and (3) PCs have a representation already close 

to hardware levels, easy to translate into computation steps. yet, there are still challenges hampering the 

use of PCs at a large scale, which we wish to tackle in this work.  

 

2.2 Introduction to probabilistic circuits 

 
Notation: we use upper case letters to denote random variables (RVs) (e.g., X) and lower-case letters for 

realizations of RVs (e.g., x). Further, we use bold font for vectors (e.g., X, x) and matrices (e.g., M).  

Probabilistic circuits (PCs) [Choi22] are a unifying framework of existing probabilistic models (e.g., 

[Darwiche03, Poon11, Rahman14, Kisa14]). They provide a concise language to represent and reason about 

tractable (i.e., exact, and efficient) probabilistic inference. The reader is referred to [Choi20] for an extensive 

review of PCs. In this introduction, we will go over the main characteristics only.   

The model. Given a set of d RVs X, a 

probabilistic circuit is a function, 

typically a density or mass function, 

represented by a parameterized 

computational graph consisting of 

sum (+), product (x), and leaf units. An 

example of PC with three binary RV (T, 

V and P) is depicted in figure 3. The 

top node value represents the joint 

probability P(T,V,P). Each 

computational unit (sum, product, 

leaf) is defined over a set of variables, 

called its scope [Trapp19], and every 

non-leaf unit computes an algebraic 

operation over sub-circuits. The scope of each non-leaf unit is given by the union of the scopes of its sub-

circuits (inputs). Essentially, sum units compute a weighted sum of sub-circuits with weight parameters being 

probabilities (ϴ), product units multiply sub-circuits, and leaf units evaluate a tractably integrable function 

over its inputs. Leaf units can be e.g., univariate probability distributions in the case of continuous RVs, or 

binary indicators (λ), indicating if a value of a variable is observed or not in the case of binary/discrete RVs. 

Typically, we assume that product units compute binary products and sum units are normalized (the sum of 

weights arriving to a sum unit is 1).  

PC learning. Learning a PC generally involves two steps: (1) learning the structure and (2) learning the 

parameters. The structure can be learned from data [Gens13, Trapp19] or chosen to be random but 

sufficiently large [Peharz19]. Parameters are typically learned by employing expectation maximisation (EM) 

[Peharz15], maximizing the likelihood under missing data. In comparison, the structure of deep neural 

Figure 3 - Example of probabilistic circuit 
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networks is typically fixed by design (number of layers, neurons per layer), thus training mostly involves 

parameter learning. Once learned, many queries can be answered without re-training.  

Properties of PCs. As learning PCs involves first learning the structure of the model, constraints can be added 

to obtain tractable inference, i.e., obtain a manageable model in terms of computations even when the 

number of variable increases. This is particularly interesting for resource-efficient hardware acceleration. 

Hence, tractability is obtained by constraining the structure. Various constraints are available for the model, 

and the reader is referred to [Choi20] for more details on the topic (as learning PCs out of the scope of this 

introduction).   

PC inference. Once the structure and parameters are learned, most inference routines are computed in one 

or several paths through the PC.  The simplest type of inference is marginal query (MAR). MAR gives the 

probability of a certain event happening. It is computed with a bottom-up path through the PC, where leaf 

nodes are set to reflect the probability to be computed (e.g., leaf indicators set to ‘0’ or ‘1’ according to the 

target probability value) and the computations are carried out until the top of the PC. For instance, taking 

the PC represented in figure 3, computing Prob(P=P1,V=V2,T=T1) involves setting the indicators to the correct 

value for each variable (i.e., λP1=λV2=λT1=1 and λP2=λV1=λT2=0) and compute the top node value. Another type 

of inference that can be commonly used by probabilistic models is Maximum A Posteriori (MAP), also referred 

to as Most Probable Explanation. The aim of this query is to find out the most likely instantiation of a variable, 

or a group of variables, that are unknown. Following the example figure 3, MAP could give the most likely 

value of the variable P, in a certain configuration of variables V and T. MAP is computed by first carrying out 

a bottom-up path through the PC, replacing every sum node by a MAX node, to keep only the most probable 

case at every step. Here, the indicators of the unknown variable(s) are set all to ‘1’ as do not assume any 

configuration. The bottom-up path can then be followed by a top-down path through the PC to recover the 

value of the unknown variable(s) corresponding to this most probable path. Using these queries, the 

confidence level of the model is also assessed, providing explainable results. For instance, a MAP query 

computes at the same time the most probable variable for certain evidence, and the probability associated 

with this event.   

Application of PCs. PCs have proven to be competitive in several applications related to embedded reasoning, 

such as speech recognition [Nicolson20] or activity/action recognition from images [Amer20, Wang18]. They 

have for instance seen to be more robust and compact than convolutional NNs for speaker identification 

tasks, and competitive for more complex speech recognition and verification tasks [Nicolson20]. They have 

also been used for semantic mapping, e.g., robots exploring environments in large-scale areas [Zhang19]. 

Readers are referred to [Paris20] for a larger review of applications. PCs can as well replace other types of 

models in specific applications. This has been illustrated in [Stelzner19], where a variational autoencoder has 

been replaced by a PC, showing faster learning, and reducing the inference cost significantly (the number of 

parameters can be for instance divided by 2). This highlights the compactness of PCs in this context. 

2.3 Probabilistic Circuits on Hardware 

The deployment of PCs on hardware requires additional care compared to software inference: (1) defining 

the optimal format and computational resolution; and (2) specifying the hardware generation process. We 

will briefly review common approaches for these two points, with a focus on methods common for PCs. 

(1) Format and resolution.  As PCs use arithmetic with probabilities, each computed is in the [0;1] range. 

These values are successively added and multiplied, leading to small probabilities at the top layers. Thus, 
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computing PCs require significantly higher resolution than deep NNs (30-40 floating point (float) bits for 

medium-sized PCs, 5-8 integer bits for deep NNs). In software, PCs are trained using logarithmic 

computation to avoid underflow, as even a double representation (64-bit float) in a generic computer 

can lead to errors. Yet, on hardware, PCs are computed in the linear domain, using formats allowing for 

encoding large dynamic ranges, such as floating point or posit [Sommer20, Shah21]. The resolution (i.e., 

the number of exponent and mantissa bits) can be optimized depending on the PC structure with 

customized arithmetic blocks.   

(2) Hardware generation. After fixing the arithmetic format and the resolution, a hardware representation 

needs to be generated. For that, a classical approach translates each computational unit (sum, product) 

of the PC into a separate hardware entity and connects multiple entities accordingly [Sommer18, 

Sommer20, Shah19]. This approach works well for FPGAs, because every PC will generate a different 

hardware configuration. A more advanced approach suitable for Application-Specific Integrated Circuits 

(ASICs) maps any PC to a generic processor [Shah22, Choi22h]. This processor contains several parallel 

paths (named processing elements), each computing part of the PC graph. This requires a dedicated 

graph compiler [Shah21].  

We will give more details about existing PC accelerators and dive into their implementations in the next 

deliverable (D2.3), where the main focus will be to propose a framework to compile PCs on hardware and 

expand it for custom accelerators, with the help of our research in parallel projects.  
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3 First contribution: approximate computing for efficient PC inference 

In this first contribution, we tackle the challenge related to the computation resolution (point (1) in section 

2.3). Our objective is to evaluate how to increase the efficiency of probabilistic inference on hardware, to 

facilitate the implementation of PCs, using approximate computing blocks that are efficient on hardware.  

3.1 Approximate computing for PCs: motivation 

Approximate computing frameworks have flourished recently in deep learning applications, varying from 

quantization methods to approximate computing blocks trading off energy versus computation accuracy. As 

deep learning frameworks are relatively tolerant to errors, a large variety of techniques have been presented.  

However, PCs have several specificities in that regard. As explained in section 2, computing multiple sums 

and products of probabilities requires a much higher resolution to avoid underflow. To develop a dedicated 

and effective approximate computing framework, we start with the following two observations:  

1. In software, PC inference methods typically use a logarithm representation for the computation, 

alternating between logarithm multiplication and linear additions. In the logarithm domain, 

multiplications become additions, and as logarithm additions are complex, thus a technique called 

the "log-sum-exp" trick is used. Essentially, it transfers the operand back to the linear domain, add 

them, and convert them back to logarithm for further computation.  

2. In hardware, most PC accelerators prefer using linear operators with higher resolution, to limit the 

risk of overflow, computing the complete PC in the linear domain [Sommer20, Shah22].  

This discrepancy can be explained by hardware limitations. First, alternating between logarithm and linear 

domains would require specific hardware blocks for encoding/decoding, which would induce a higher cost 

and limit speed. Second, computing a PC fully in the logarithm domain is inefficient due to the prohibitive 

cost of logarithmic adders [Sommer20]. Instead, a full linear computation, using floating-point or Posit 

formats, is preferred. In this case, the hardware cost steadily increases with the model complexity to handle 

the increasing dynamic range of the PC. This cost is heavily dominated by multiplications, i.e., a floating-point 

multiplier consumes 6× more energy than an adder in a 45 nm process technology [Olascoaga19]. 

3.2 Approximation using Addition as Int (AAI) 

A path towards more efficient PC inference on hardware is to perform inference as in software, i.e., 

alternating between logarithm and linear computations. To achieve this, we propose to build an approximate 

computing framework dedicated to PCs, leveraging Addition As Int (AAI) [Mogami20]. The complete 

approximation process is illustrated in figure 4.  
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Figure 4 - Overview of the approximate computing methodology with Addition As Int 

AAI approximates the logarithm of a floating-point number, extending the well-known Mitchell’s 

approximation [Mitchell62], initially intended to provide a log approximation of integer numbers encoded in 

binary. To explicit it, consider an N-bit binary string, as represented in the top left part of figure 4. In binary, 

each symbol represents a power of two, i.e., the number X=13 is encoded as X=‘001101’, corresponding to 

the value X=23+22+20. Mitchell’s approximation starts by taking the leading ‘1’ of the binary string and place 

a virtual decimal ‘dot’ at the position k of this leading one (position 3 in the example figure 4). Then, it is 

possible to factorize the represented number according to the power of two associated with the position of 

this leading ‘1’. This transforms the number into a floating point into: X=2k(1+F), F being the fractional part 

of this new number. Taking the logarithm of this new representation, we obtain log2(X)=k+log2(1+F); Michell’s 

approximates log2(1+F) by F, which means that to obtain the logarithm approximation, we only need to 

identify the leading one and extract the corresponding fractional part.  

AAI extends this approximation technique for floating point multiplication. Assuming a floating-point 

representation with one sign bit, several exponent bits E and several mantissa bits M, the general 

multiplication process of two floating points X and Y is illustrated in figure 4 (right top). Specifically, it involves 

the multiplication of the two mantissas MxMy, which requires a high resolution. To avoid it, AAI proposes to 

apply Mitchell’s idea to floating point representation, which is similar than the one of the transformed binary 

strings into fixed point. This gives:  

X=2Ex(1+Mx) ➔log2(X)=Ex+log2(1+Mx) ➔Ex+Mx (with Mitchell’s approximation). 

Hence, the multiplication of two floating point numbers, becoming an addition in the logarithm domain, can 

be approximated by simply adding the two exponents and the two mantissas, which only requires an 

extremely simple hardware.   

Generally, all multipliers can be replaced with AAI to save energy. However, that may have a dramatic impact 

on the accuracy of the model, because certain nodes require a very high resolution to be computed (as our 

experiments in section 3.3 and figure 5 show). Instead, in this work, we target the development of a 

dedicated methodology to use AAI approximate multipliers in an optimal way for efficient PC inference. This 
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work has been submitted in a workshop on tractable probabilistic modelling [Yao23] and recently at another 

AI-oriented conference. Here, we provide a quick summary of the methodology and results. Theoretical 

proofs and more details will be available upon final publication. The complete code will also be open-sourced. 

3.3 First experiment: replace all multipliers with AAI 

In a first experiment, we evaluated if we could reduce the number of bits of PC inference, and if replacing all 

multipliers by AAI approximate versions would have a large impact on the model’s accuracy. We took four 

benchmarks as an example (NLTCS, Jester, DNA, Book), among the most used benchmarks used in the 

literature for probabilistic models. We evaluated two types of queries: 

• Marginal query (MAR), which calculates the probability of a certain even happening.  

• Maximum A Posteriori (MAP) which evaluates the most probable value of a missing variable (or a set 

of missing variables) under certain evidence.  

The results, plotted according to the resulting model’s energy, are displayed in figure 5. An energy of 1 

corresponds to the energy of a double floating point format (64 bits). Plain lines represent an exact 

computation and dashed lines represent the approximate multiplication with AAI. We evaluated the results 

for various number of exponent bits (3 bits in blue, 5 bits in green and 8 bits in pink), each time varying the 

number of mantissa bits to obtain a full curve.   

 

Figure 5 - Energy and accuracy comparison of exact versus AAI based mutipliers for various benchmarks 

First, already for an exact floating-point representation, we can reduce the number of bits for accurate 

inference, gaining a significant energy consumption. This motivated the use of customized formats for 

efficient inference. Second, we can observe that AAI significantly reduces the inference cost on top of 

customized floating point, by around one order of magnitude in most cases. For MAR query, AAI may require 

fewer mantissa bits, as the two mantissas do not need to be multiplied compared to exact floating point 

multiplications. In the contrary, AAI tends to use more exponent bits to maintain a good accuracy. For MAP 

query, our experiments show that the inference can be done at very low cost for most benchmarks, without 

necessitating any error compensation mechanisms. This is because MAP inference cares about the rank 

between probabilities, as it gives the most probable values of missing variable(s). Hence, as long as the rank 

between probabilities is preserved, the absolute probability value can be relatively inaccurate. More 
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generally, compared to an initial 64-bit floating point computation, AAI can attain savings of almost 700x, by 

using a customized number of bits for the computation and simplify the hardware. For MAR query, the error 

tends to increase rapidly as the number of bits is reduced. The optimal energy can be traded-off with the 

tolerated error in this case.  

3.4 Second experiment: safely replace multipliers. 

In some cases, it is not possible to tolerate error in the model. Instead, we would like to be able to safely 

replace part of the multipliers in the PC while having no or a very limited impact on accuracy. That is why in 

the second experiment, we propose and evaluate an error compensation technique and dedicated 

replacement methodology, to safely replace multipliers by AAI also in the case of MAR query.  

Error correction. The error introduced by AAI can result in substantial approximation errors in deep models 

as the error accumulates with an increasing number of multiplications. To reduce the error caused by AAI, 

[Saadat18] proposed an error correction by computing the expected error, assuming a uniform probability 

for all possible floating-point numbers. However, in PCs this assumption will typically not hold true. 

Therefore, as the PC represents a given probability distribution, we propose to correct for the expected error 

with respect to the probability distribution represented by the circuit, and not only a uniform distribution. 

Essentially, we use a Monte-Carlo sampling method to compute the expected value at each node, comparing 

it to the ideal value with exact computation. After that, it is possible to implement a greedy approach that 

will gradually replace the multipliers introducing the lowest error on the final probability, i.e., having the 

lowest influence on the probability distribution learned by the model.   In figure 6, we plotted the error 

observed on a marginal query (MAR), comparing 5 different random runs (i.e., where we randomly replace 

multipliers in the PC, in pink) with the proposed methodologies for two types of PCs (deterministic, in blue 

and non-deterministic in green). We plot the error against the energy of the PC inference, normalized with 

the energy of a standard implementation (double float, 64b). The error reflects how different the 

approximates PC is from the original using 64-bit computation. 

 

Figure 6 - Comparison of energy gains and error of random replacement of multipliers by AAI (pink, 5 runs), with the 

proposed methodology for two different types of PCs (blue and green) 

As it can be seen, although a random replacement allows to save energy, the error quickly increases, in 

particular for complex datasets. In contrary, the proposed methodology can safely replace multipliers with 

limited impact on the accuracy, obtaining PCs with 40-60% less energy for most benchmarks.  
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4 RISC-V processor: A-core developments  

In parallel of the development around approximate computing for PCs, Aalto University has successfully 

tested their first open-source RISC-V processor named A-core. The silicon chip has been taped-out in a 22nm 

technology in December 2022 and fully tested during the summer of 2023 (publications are ongoing). This 

processor can serve as a baseline for future integration withing the sustAIn project.  

The Acore chip contains a RISC-V processor, fully developed at 

Aalto University. It is coupled with 2 accelerators, one dedicated to 

cryptographic tasks, and the other for AI tasks. The die photograph is 

illustrated in figure 7. Here, we will focus on the characteristics of the 

processor, yet it can be noted that this chip developed the competence 

of the laboratory to also include accelerators together with the 

processor core, connected through an AXI-4 bus. When designing the 

dedicated PC accelerator envisaged in sustAIn, this knowledge can be 

readily used.  

The processor is a 32-bit 7-stage pipeline architecture, equipped 

with 64 kB of program memory and 64bK of RAM.  After first 

measurements, the processor has been successfully run with a 200 

MHz clock. Performance benchmarks are giving similar performances than an ARM cortex M-0 processor.  

A second version of the processor will be taped-out in 2024.  

 

 

 

Figure 7 - Die photograph of the A-

core chip 
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5 Outlook and conclusions 

This deliverable detailed the first steps towards the complete node intelligence envisaged in sustAIn. It 

provides a motivation on the use of probabilistic circuits (PCs) for explainable and efficient embedded AI. It 

further details our first contribution around more energy-efficient inference for PCs using a dedicated 

approximate computing algorithm and custom hardware blocks. We also reported on parallel 

implementation of a RISC-V processor that could be used in the project at a later stage.   

In the following task (T2.3), we will elaborate on our current developments for an accelerator targeting PC 

computing, yet not forgetting the possible acceleration of other models such as deep NNs. We are currently 

investigating an accelerator architecture that could execute several models on the same platform, to give 

more possibilities for the final sustAIn node.  
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