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Abstract 

This document presents the SUSTAIN Deliverable D3.1 Data-driven model library for sensor networks. 

This Deliverable is tightly coupled with Task T3.1 Lightweight black-box and transparent models, running 

from M1 to M18, and presents its main outcomes. The goal of this task was to design, implement and test 

data-driven models for sensor networks. As detailed in the present document, we have considered 

combinations of shallow neural networks and tree-based structures, properly designed to take into 

account computational (limited memory/CPU) & energy constraints. As we will see in this document, we 

have investigated the trade-offs between training time, amount of data needed for training, and model 

performance. 

This Deliverable is meant to be public. It links to D2.1 System modelling of the distributed and node 

intelligence: initial common strategy, released in the early stages of the project, and to the forthcoming 

deliverables: D3.2 Distributed learning framework (to be released at M33), D3.3 Probabilistic 

communication & computation system (M36), and D3.4 Comparative analysis of results (M42). 

This Deliverable is intended to be the final version of this document.  

The code associated to this deliverable is publicly released at the following link: 

https://github.com/DIOL-UniTN/Fast-Inf  

This deliverable is based on the following submissions (under submission at the time of writing this 

document): 

1. Fast-Inf: Ultra-Fast Embedded Intelligence on the Batteryless Edge (Submitted to MobiCom 2024). 

2. Memory-efficient Energy-adaptive Inference of Pre-Trained Models on Batteryless Embedded 

Systems (Submitted to EWSN 2024). 
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1 Introduction 

Today’s Internet of Things (IoT) applications require embedded intelligence on resource-constrained edge 

devices to obtain timely, accurate, energy-efficient, and privacy-preserving inferences based on data sensed 

in situ [68]. However, embedded intelligence is resource-hungry, while most edge devices are battery-

powered and need to operate for extended periods without maintenance [1, 2]. Running energy-hungry deep 

neural network (DNN) models on these devices can rapidly deplete their batteries, reducing their operational 

time and effectiveness [56, 60, 61, 64]. Thanks to the latest breakthroughs in electronics and energy 

harvesting, a new generation of edge devices that can operate without batteries is now a reality [53, 58]. 

Batteryless operation promises embedded intelligence forever without maintenance by using exclusively the 

energy harvested from the ambient [24]. Compared to conventional mobile platforms, batteryless edge 

devices are “extremely” resource-constrained. For instance, they are built around 16-bit ultra-low-power 

microcontroller units (MCUs) with a few kB-sized memory [6, 19, 39]. Furthermore, they have tight energy 

budgets since they rely solely on energy harvested from the environment to charge their tiny capacitors. Due 

to scarce and transient ambient energy, they quickly consume stored energy and experience frequent power 

failures, leading to intermittent computation [3, 25]. Several recent studies have focused on batteryless 

intelligence and demonstrated the intermittent execution of tiny DNN models under resource constraints 

and stringent energy budgets [12, 24, 67]. However, these studies have two significant problems, as listed 

below:  

P1: Very slow and energy-hungry inference. Batteryless edge devices may face power failures while 

executing even a single DNN layer, due to their tiny energy storage capacitors [24, 67]. Thus, several 

charge/compute cycles (power cycles) are required to complete the inference. At the end of each power 

cycle, the device backs up the computational state in nonvolatile memory. When it turns on, it recovers the 

computational state and resumes the DNN inference. The limited processing capabilities of these devices and 

overheads due to frequent backup/recovery make compute- and memory-intensive DNN computations 

extremely slow and energy-inefficient. For instance, running even simple models takes on the order of several 

seconds to minutes [24, 36, 67], preventing timely responses.  

P2: No response to charging time dynamics. Harvested energy can be often unstable due to the sporadic 

and uncontrollable nature of ambient energy sources. This can lead to longer charging times and increased 

latency during computations [20, 31, 43]. Unfortunately, DNN models are latency-agnostic as their layers are 

executed sequentially till the last layer. Some studies have proposed augmenting DNN models with early exit 

branches [36, 37], which allow the model to terminate early and still provide outputs with reasonable 

accuracy for the application. However, these solutions are not lightweight since they can introduce significant 

memory and computational overhead due to the additional parameters of the augmented exit branches.  

Problem statement. Existing DNN-based inference solutions are computationally heavy and energy-hungry 

(P1) and latency-agnostic (P2), making them unsuitable for batteryless edge devices. These devices must 

output accurate results in a few power cycles by consuming only a minimal amount of energy stored in their 

tiny capacitors [51]. This calls for a new embedded intelligence approach with extremely lightweight 

computational characteristics, minimal latency, and satisfactory inference accuracy for the application at 

hand. Contributions. We introduce Fast-Inf (Fast Inference), a novel embedded intelligence solution 

specifically tailored to extremely resource-constrained systems. We build Fast-Inf around the recently 

proposed Fast Feedforward (FFF) architecture [8]. 
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Figure 1: Conceptual scheme of Fast-Inf functioning. 

As depicted in Figure 1, Fast-Inf models are binary tree-based neural networks where each inner node of the 

tree is a single neuron, while the leaves are tiny feedforward layers. An inner node of the tree computes an 

intermediate output that is then used to decide whether to take the left or the right branch. When a leaf 

node is reached, the inference concludes by executing a feedforward layer. We have introduced several 

innovations on the original FFF networks, to ensure that Fast-Inf models can fit in the extreme edge: 

(1) Importantly, FFF networks yield a memory/inference time and accuracy trade-off as deeper FFF networks 

remain computationally lightweight but with an increased memory footprint. To address this challenge, we 

devised a specific pruning approach, which truncates less important leaves and imposes sparsity to eliminate 

weights that have minimal impact on accuracy.  

(2) Furthermore, we introduced truncated inference, a novel approach that makes these networks adaptive 

and energy-aware (i.e., aware of the energy harvesting dynamics).  

(3) Besides, to improve the accuracy of original FFF networks, we have extended the training procedure 

introduced in [8] by using a different loss function.  

(4) Finally, we introduced an energy- and memory-efficient inference engine that enables fast and efficient 

intermittent FFF inference with minimal overhead on the MSP430FR5994 [33] platform, which is the de facto 

standard computational platform for batteryless systems.  

These contributions make Fast-Inf the first pure software-based solution that achieves ultra-fast inference, 

introduces minimal memory overhead, and offers energy-adaptive latency. In short, Fast-Inf comes with the 

following features:  

(1) Tiny models. The Fast-Inf compression reduces the memory footprint of original FFF networks 

significantly (by up to 24.5x), making them fit in small memory of batteryless devices.  

(2) Ultra-fast tiny inference. Running Fast-Inf models is ultra-fast and energy-efficient due to their 

logarithmic time complexity. We observed up to 608× speedup and less energy consumption compared to 

DNNs during our experiments on the MSP430FR5994 MCU.  

(3) Tiny runtime. Fast-Inf inference engine has 6× less code size and 5600× smaller runtime buffer compared 

to the de facto inference engine for batteryless devices [24]. Fast-Inf inference tasks are lightweight and have 

significantly lower backup and runtime memory overhead.  

(4) Adaptable latency. Fast-Inf can truncate (i.e., skip) the leaves when necessary, minimizing latency without 

degrading the accuracy significantly, and adapting inference to sporadic energy conditions and dynamic 

constraints. This strategy further reduces inference time by 6x. 

We believe that Fast-Inf acts as a solid baseline for future research and leaves a rich design space for future 

works for further exploration and improvements. We make our code publicly available at [5]. 
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2 Related Work 

Enabling embedded intelligence on the batteryless edge offers intelligence by using the “free” energy from 

the environment [24, 25], but comes with several challenges due to extreme resource constraints and 

intermittent operation. In this section, we summarize these challenges, underline how Fast-Inf addresses 

them, and highlight the main differences between Fast-Inf and the state-of-the-art solutions. 

2.1 Addressing Resource Constraints 

Various techniques have been proposed to reduce the parameters of DNN models to make them suitable for 

embedded devices with limited memory and computational resources [9, 11, 28, 41]. These techniques 

include quantization [23, 26, 38], pruning [28, 29, 45, 46, 48], and separation [9, 24, 62], and have been 

already implemented in multiple studies targeting batteryless edge devices. For instance, Gobieski et al. [24] 

utilized pruning, separation, and neural architecture search [47] to obtain a DNN model that can meet the 

memory and energy requirements of the target device. However, the intermittent execution of these models 

results in substantial overheads, as we explain shortly. 

2.2 Challenges of Intermittent Inference 

Although energy is an abundant resource, its availability can be affected by various factors, such as the 

inefficiency of energy harvesting techniques and the erratic nature of ambient energy. These factors, along 

with the increasing computational demand, often result in energy shortages and power failures [6, 17, 19, 

30]. A power failure leads to the loss of the computation state, i.e., a failure typically clears the contents of 

the CPU registers and the volatile memory. 

Consequently, the computation returns back to its main entry point when power is restored, but it might not 

progress forward. Furthermore, the re-execution of a code block after a power failure might keep persistent 

variables (i.e., variables kept in non-volatile memory) in an inconsistent state due to Write-After-Read (WAR) 

dependencies [57]. Several software solutions have been proposed to address these issues [7, 10, 13, 14, 43, 

49, 50, 65, 67]. Briefly, these solutions run computations intermittently across multiple power cycles by 

backing up the computational state in non-volatile memory when power failure is imminent and restoring it 

when sufficient energy becomes available for resumption. Here, we consider the task-based model [7, 14, 

49, 50, 65], a lightweight intermittent computing approach that requires the computation to be defined as a 

set of failure atomic and idempotent tasks that can be safely re-executed upon power failures [14, 49, 50, 

65, 66]. Several recent works focused on the task-based implementation of custom DNN workloads and their 

efficient intermittent execution [12, 24].  

Computationally heavy tasks. Gobieski et al. [24] tested a task-based implementation of a DNN for the 

MNIST dataset [18]. This implementation involves 18 complex computational tasks, with the convolution task 

alone requiring several hundred thousand multiply-and-accumulate (MAC) operations. Unfortunately, 

performing these tasks on MCUs with limited processing power on batteryless platforms results in significant 

delays, and any energy spent is wasted if computation is interrupted by a power failure [24, 67]. While low-

power hardware accelerators found in batteryless platforms could speed up the process, they still consume 

a significant amount of energy and lose computational state in the event of a power failure [12, 24, 40, 44]. 

Backup and runtime memory overhead. MAC operations (e.g., o+=w*x+b) executed by DNN tasks have WAR 

dependency. To preserve idempotency and enable failure-atomic execution of these DNN tasks, their inputs 
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and outputs are separately maintained in non-volatile memory in a working buffer [24]. Consequently, the 

working buffer requirement of a layer is the sum of its input and output sizes. Thus, the runtime memory 

overhead of a DNN model is determined by the layer with the highest input/output requirement. 

Unfortunately, DNNs introduce large runtime memory overhead due to several large layers being used. 

Besides, DNN tasks also need to back up their outputs upon completion. This is to avoid losing their 

computational results due to a power failure, but introducing significant energy and time overhead. In 

general, tasks with larger runtime buffer requirements have considerably larger backup overhead.  

Latency Adaptation Overhead. Existing works used early exit branches to adapt inference time considering 

the available energy [36, 37, 52]. However, these branches introduce memory, backup, and computational 

overhead w.r.t. a conventional DNN model, since their inputs need to be computed and preserved in non-

volatile memory during inference. 

2.3 Unique Features of Fast-Inf 

Table 1 presents a qualitative comparison of the prior works on batteryless intelligence. Fast-Inf is 

significantly different from all prior works since it builds upon the recently introduced FFF networks [8], 

introducing several essential improvements to the original FFF architecture, which allows making it 

deployable on edge systems with extremely limited resources. In essence, Fast-Inf is the first pure software-

based work that achieves ultra-fast inference, introduces minimal memory overhead, and offers adaptive 

latency. We identify three main features that make Fast-Inf distinct from the current state of the art.  

1 Fast-Inf employs a custom loss function during training, which encourages a sort of “specialization” of 

leaves, i.e., it forces the leaves to just concentrate on a subset of the output classes. This allows us to 

minimize the accuracy drop when pruning Fast-Inf models to fit them in the small memory of a 

batteryless edge. 

2 Fast-Inf combines structured and unstructured pruning to further reduce the memory footprint of 

models. It “truncates” some leaves which are mostly responsible for a single class (structured pruning). 

Moreover, it imposes sparsity while retraining the FFF model, eliminating the weights that have minimal 

impact on its accuracy (unstructured pruning). Fast-Inf also enables adaptive inference to reduce the 

inference time, allowing the real-time choice of whether to use the pre-computed values for each leaf 

or compute the actual output.  

3 Fast-Inf runtime executes its models very efficiently under sporadic ambient energy. Its tasks are 

lightweight and require just a few bits to store the state of each intermediate node. This allows us to 

significantly reduce the backup/recovery overhead during intermittent execution. 

Table 1: Prior works on batteryless intelligence 
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3 Fast-Inf on the Extreme Edge 

Fast-Inf is a novel embedded intelligence solution specifically tailored to extremely resource-constrained 

batteryless systems. At the core of Fast-Inf is the tree-based FFF network architecture proposed in [8], which 

enables ultra-fast and energy-efficient inference due to its inherent logarithmic time complexity. 

3.1 Overview of Fast-Inf 

An FFF network is a neural network with a k-d tree structure. Fast-Inf employs FFF networks with a binary 

tree structure, depicted in Figure 1. Each inner node of the tree can be seen as a single neuron, while the 

leaves are small feedforward layers with a single hidden layer.  

3.1.1 Performing Fast Inference. Formally, each inner node 𝑖 of the tree computes an intermediate output 

𝑜𝑖 that is then used to decide whether to take the left or the right branch. The intermediate output is 

computed as 𝑜𝑖 = 𝑤𝑖
𝑇 𝑥 +𝑏𝑖, where 𝑜𝑖 is the output of the 𝑖-th inner node, 𝑥 is the input, 𝑤 is the weight vector 

of the 𝑖-th neuron, and 𝑏𝑖 is the bias term of the node. After computing the neuron’s output 𝑜𝑖, we move the 

computation to the left branch if 𝑜𝑖 < 0, otherwise, we go to the right branch. This procedure is re-iterated 

for all the nodes encountered. When a leaf 𝑙 is reached, we compute the tree output. We do so in two steps: 

first, we compute the output of a hidden layer in the leaf: ℎ𝑙 = 𝑊𝑙,ℎ
𝑇𝑥 +𝑏𝑙,ℎ where ℎ𝑙 is the output of the hidden 

layer for the 𝑙-th leaf, 𝑊𝑙,ℎ is the weight matrix of the hidden layer of the 𝑙-th leaf, and 𝑏𝑙,ℎ is the array of 

biases for layer. Finally, we compute the logits of the model by computing 𝑦ˆ = 𝑊𝑙,ℎ
𝑇𝑥 +𝑏𝑙,ℎ. 

3.1.2 Applicability. As we show through our experiments in Section 5, Fast-Inf is suitable for solving problems 

that can be addressed using fully connected networks (FCNs). This is because the original architecture of FFF 

networks [8] can be viewed as a tree-based decomposition of FCNs. As a result, Fast-Inf performs comparably 

to FCNs where the goal is to map instantaneous measurements to a specific class, such as in the case of 

human activity recognition (HAR [32]), which is a popular embedded application that classifies activities using 

accelerometer data. On the other hand, for tasks that involve spatiotemporal structure (e.g., audio samples), 

FCNs typically perform worse than convolutional neural networks (CNNs) in terms of accuracy. However, 

Fast-Inf can still achieve satisfactory performance on tasks with reasonably small input sizes, such as keyword 

spotting (KWS) [63]. This is another common embedded application that performs speech recognition to 

identify a set of target keywords through a microphone. 

3.2 Training Fast-Inf Models 

The aim of the Fast-Inf training process is to build a tree-based neural network with minimal depth that 

achieves the target accuracy. The training is iterative: it starts with a network of depth 1, trains it, and checks 

if the target accuracy is achieved. If not, the depth of the network is increased, and the training procedure is 

repeated. This procedure stops when a network with the given target accuracy is obtained. As we discuss in 

Section 3.2.2, we modify the training procedure from [8] to improve the inference accuracy and also to 

facilitate model compression through pruning, reducing the memory footprint of the model as well as the 

inference time.  

3.2.1 Background on Training FFF Networks. In this subsection, we summarize the training procedure in [8], 

which works as follows. During training, the output of the model is a weighted sum of the outputs of each 

leaf, as initially introduced in [22]. Practically, the outputs of the inner nodes are converted to probabilities 

(of taking the right branch): 
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where 𝜎 represents the sigmoid function. Thus, we can combine the probabilities of the inner nodes to use 

them as weights for a leaf 𝑙: 

 

This means that, during training, the output of the model is: 

 

where 𝑁 is the number of leaves. At each training step, 𝑦ˆ is used to compute the loss for the 

backpropagation as: 

 

where L𝑥ℎ is the cross-entropy loss between the logits 𝑦ˆ and the real classes 𝑦 and 

 

is the entropy of the nodes’ output probabilities (the so-called “hardening loss” in [8], where X is the dataset, 

N is the set of nodes in the tree, and 𝐻 is the entropy measure). After training, we “discretize” the tree by 

allowing it to perform inference in logarithmic time w.r.t. the total number of neurons in the leaves. We do 

so by simply taking the path with the highest likelihood, i.e.: 

 

Implementation-wise, this can be seen as a tree traversal: when 𝑜𝑖 < 0, we move the computation to the left 

branch, otherwise, we move the computation to the right branch.  

3.2.2 Fast-Inf Training. The training procedure for Fast-Inf is different from the training approach in [8], as 

we: (1) do not use the hardening loss; and (2) employ an L2 loss on the leaves’ parameters. 

 

We do not employ the hardening loss described in [8] as, from preliminary experiments, it showed poor test 

accuracy with small models, which are our target. This may be due to the fact that the hardening loss makes 

the optimization process harder and thus requires significantly more epochs to converge to a satisfactory 

accuracy. Moreover, we add an L2 loss on the leaves’ parameters, to: (1) make pruning easier (as we describe 

soon); (2) allow the leaves to have “simple” input-output models. The latter point here means that, since we 

have a simple model, each leaf tries to predict a small subset of classes, which allows us to perform leaf 

truncation (see Section 3.3). Thus, the loss used in our method, which we optimize using Adam [42], is the 

following: 
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The first term, L𝑥ℎ, is the cross-entropy loss between the targets and the model’s outputs, as in Equation (4). 

The second term, instead, is the L2 norm of the parameters used in the leaves. The L2 loss on the leaves’ 

parameters pushes unnecessary weights to 0, yielding several advantages: (1) it facilitates compression by 

means of pruning considering the magnitude of the weights [21, 24], because the unnecessary weights 

already have very low magnitude; and (2) it leads to learning simpler input-output functions, which perform 

as few operations as possible on the input data to compute the output. Indirectly, this loss forces the model 

to learn a more effective tree structure, where each leaf is responsible for the prediction for just a few classes, 

instead of all of them. 

3.3 Boosting Inference Efficiency 

Given a binary FFF with leaf width 𝑤, depth 𝑑, input size 𝑠𝑖 on output size 𝑠𝑜, we can compute: 

• the inference cost as 𝜃 (𝑑 · si + 𝑠i · w + w · 𝑠o); 

• the memory footprint as 𝜃 (2𝑑 −1 · 𝑠𝑖 + 2𝑑 · 𝑠𝑖 · w + 2𝑑 · w · 𝑠𝑜). 

Intuitively, deeper networks lead to an increased memory footprint and inference cost. To remedy this, Fast-

Inf combines structured and unstructured pruning by (1) truncating less important leaves (structured 

pruning) and (2) imposing sparsity to eliminate weights that have minimal impact on accuracy (unstructured 

pruning). 

3.3.1. Leaf Truncation. In an FFF network, the leaves carry out a significant portion of the computation and 

hold most of the weights. As such, it is crucial to determine when a leaf’s computation is vital and when it 

can be reduced. To address this aspect, we introduce a leaf truncation mechanism, which can be seen as a 

form of structured pruning. Our approach takes into account the a priori probabilities of each class for each 

given leaf. The underlying assumption is simple: if the a priori probability of the most likely class in a given 

leaf is higher than a threshold, then we “cut” the hidden layers in the leaf and replace them with constant 

logits. Formally, if: 

 

then we can set: 

 

where 𝜉 is a hyperparameter, and 𝑛 is the number of classes. Note that the introduction of this truncation 

mechanism introduces a dual advantage. In fact, one may either: (1) eliminate the truncated leaves, 

significantly reducing both the inference time and the memory consumption of the model; (2) or, keep the 

truncated leaves in the model and choose, at runtime, whether to use the pre-computed values for the leaf 

or to compute the actual output of the leaf. It is important to stress once again that the introduction of this 

mechanism is made possible by the introduction of the L2 loss during training (we will further demonstrate 

this experimentally in Figure 3). In fact, as specified in the previous subsection, this loss encourages learning 

simpler input-output models in the leaves and, as a consequence, learning better structure for the trees, so 

that each leaf has to predict just a few classes from the whole set of classes. Thus, when a given leaf 
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“receives” (i.e., is queried for) samples from a given class, it can be replaced with a “pre-computed” 

prediction, which uses the a priori probability for each class. Note that this loss is needed because of the way 

the trees are trained. Since during the training all leaves participate in each prediction, their weights are 

usually updated to increase the performance of the whole model (i.e., the weighted sum of the leaves). By 

using an L2 loss on the leaves’ parameters, we enforce a “specialization” of the leaves, which in turn allows 

us to learn tree structures that try to “route” a given sample to the leaf specialized for its corresponding class.  

3.3.2 Depth-by-depth Compression by Imposing Sparsity. The leaf truncation mechanism can greatly help in 

reducing both the memory cost and the inference cost. However, it is not always possible to truncate leaves, 

which may limit the application of these systems in resource-constrained devices. Moreover, as model depth 

grows, the child nodes also introduce non-negligible memory overhead. For this reason, we introduce 

another specific compression mechanism that can further reduce the amount of memory used by Fast-Inf 

models. This approach, which can be seen as a form of unstructured pruning, works as follows.  

Compression Iteration. Our compression method employs an iterative pruning technique, which compresses 

the entire tree in a depth-wise manner until it can fit into the targeted device’s memory. The procedure 

initiates with the largest leaves (i.e., the nodes at depth 𝑙), where a certain percentage of elements of their 

weight matrix W𝑙 are set to 0. The model is subsequently retrained, and this process is repeated until the 

accuracy drop is insignificant. Our algorithm then moves to the largest nodes at the next depth 𝑙 − 1, 

sparsifying the weight matrix W𝑙 −1, and so on.  

Pruning Weights. At each epoch, our algorithm selects a batch of samples from the dataset and applies 

projected gradient descent (PGD) to update the weights and remove the unnecessary ones. This involves two 

steps: (1) Firstly, we calculate gradients in relation to the weights of the nodes at depth 𝑙, which we denote 

as W𝑙. We then update the weight matrix by moving in the direction of the negative gradient. (2) Secondly, 

we sparsify the weight matrix using a hard thresholding procedure that sets S% of the weights with smaller 

magnitudes to 0. These steps can be formalized as: 

 

Note that the weights set to 0 at this point might reappear in the next epoch. Through multiple iterations, 

the weight matrix tends to stabilize (keeping only some specific nonzero weights), so that W𝑙 satisfies the 

given sparsity without degrading the accuracy of the Fast-Inf model significantly. 
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4 Implementation 

We implemented the Fast-Inf model training and pruning in Python using the PyTorch framework. Moreover, 

we implemented a tiny task-based inference engine to run Fast-Inf models intermittently. The engine can 

adapt the inference latency by skipping leaf computations when power failure is imminent and provide an 

immediate value that represents an approximation of these computations. We selected the MSP430FR5994 

[33] MCU, the state-of-the-art microcontroller used in batteryless platforms, as the target hardware platform 

for our experiments. This MCU offers 256 kB of FRAM [34] and 8 kB of SRAM memory. The FRAM stores the 

Fast-Inf inference code, the parameters of the Fast-Inf model, the computational state to be logged, and the 

runtime buffer used to execute the Fast-Inf model intermittently. 

4.1 Fast-Inf Training and Compression 

To develop our Fast-Inf models, we started from the FFF implementation in PyTorch from [8]. We build on 

top of the fastfeedforward library, which implements FFFs networks. The Python code used for the training 

function is shown in Listing 1. 

Listing 2, instead, shows the Python implementation of the leaf truncation mechanism. 

 
Listing 1: Code for training Fast-Inf. 

https://github.com/pbelcak/fastfeedforward
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Listing 2: Code for the leaf simplification mechanism. 

See Section 5.1 for the hyperparameter values used in our implementation. After training, to perform leaf 

truncation, we execute a script that reloads the dataset and checks the a priori probabilities. After truncation, 

we obtain a wrapped version of the model that allows us to have both the pre-computed values for the 

simplified leaves and the parameters of the truncated leaves, enabling us to choose whether to keep the 

truncated leaves or not. Then, we apply unstructured pruning as described in Section 3.3.2. We start the 

compression process by setting S = 0.45, i.e., with a sparsity level of 45%, and gradually increase it to reach 

the required size. We monitor the accuracy during retraining and reduce sparsity if the accuracy drop exceeds 

3-5%, to prevent over-pruning. To address overfitting during retraining, we use an L2 regularization term. 

4.2 Fast-Inf Model Representation 

After training and compression, we use a script that automatically translates the parameters of the Fast-Inf 

model into C arrays and stores them in a single header file. This header file is used by the intermittent 

execution runtime, explained in Section 4.3, which navigates the tree, reaches the leaves, and computes the 

output in a power failure-resilient manner. The arrays in this header file include the weights and biases of 

the inner nodes of the tree (node array), the hidden layers of the leaves (hidden array), and the output layers 

of the leaves (output array). The Fast-Inf utilizes the Compressed Sparse Row (CSR) representation, which 

creates sparse arrays by keeping only the non-zero values and their corresponding indices [28], which is 

computationally efficient when performing arithmetic operations. We also extract a fast_inference array that 

contains the pre-computed values for each leaf. The advantage of this representation is twofold. (1) We can 

obtain the smallest model architecture by only keeping the fast_inference array and excluding the 

parameters of the truncated leaves (hidden and output arrays). This speeds up the computation and reduces 

memory consumption, making it ideal for extremely resource-constrained systems. (2) We can keep all the 

arrays, allowing the runtime choice between using pre-computed values or re-computing the outputs for the 

current input adaptively considering the energy and latency requirements, as mentioned earlier in Section 

3.3.1. 
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4.3 Fast-Inf Intermittent Inference Engine 

The Fast-Inf inference engine utilizes a task-based programming model [7, 14, 65] to execute Fast-Inf models 

in a power failure-resilient manner. Tasks have lightweight computational characteristics and minimal backup 

overhead. Fast-Inf preserves a structure of type model_t in non-volatile memory, which encapsulates the 

binary tree-based neural network by maintaining the tree depth, the leaf shapes, and pointers to the arrays 

that hold the model parameters.  

4.3.1 Running Fast-Inf Model. The Fast-Inf inference engine includes four core tasks: runModel_t, neuron_t, 

tree_t, and leaf_t, which are described below.  

Starting inference. The runModel_t task is the entry point of the inference procedure. The application 

invokes this task by providing a pointer to the model_t structure that holds the Fast-Inf model.  

Computations. The neuron_t task is the main computational task that carries out the essential dot product 

operation by performing MAC operations. Since these tasks have all-or-nothing semantics, their 

computational progress and the energy used are lost if they are interrupted by power failures [67]. In order 

to prevent this issue, we incorporated loop continuation in our implementation, introduced by Gobieski et 

al. [24]. This feature enables the computation to resume from the latest iteration in the loop nests when the 

interrupted task is restarted.  

Traversing the model. The tree_t task navigates the tree by iteratively invoking the neuron_t task to select 

the next child node on the path. When a leaf node is reached, the leaf_t task comes into play, executing the 

feedforward model by iteratively invoking the neuron_t task.  

Result. Upon completion, Fast-Inf writes the output to the designated address in nonvolatile memory. 

 
Listing 3: Pseudocode for the truncated inference. 

4.3.2 Fast and Adaptive Inference Mode. Fast-Inf maintains a boolean flag fast to adapt the inference latency 

in a simple but effective way. The leaf_t task, whose pseudocode is presented in Listing 3, checks this flag. In 

case the fast flag is set, the task sets the result variable by using the pre- calculated value in the fast_inference 

array and finalizes the inference by setting tree_t as the next task in the control flow. Otherwise, the task 

executes the feedforward model by invoking the necessary tasks. It is worth mentioning that next_task is 

used to set the next task in the task-based control flow, which is a keyword forming the basic building blocks 

of the task-based programming model in intermittent computing [65]. The fast flag can be set by an interrupt 

service routine or explicitly by the application. Potential triggers for the fast inference may occur when a 

deadline or power failure is imminent. This adaptable method allows for the selection of an optimal inference 

approach that can be modified to suit different runtime conditions. 
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5 Evaluation 

We evaluated Fast-Inf by testing it on datasets from various fields. Firstly, we evaluated Fast-Inf via 

simulations to investigate the effect of the model parameterization and compression, whose results are 

reported in Section 5.1. Then, we evaluated the performance of Fast-Inf models in our testbed using 

MSP430FR5994 launchpad as target platform. We report the second part of the evaluation in Section 5.2. 

Datasets. We used three different datasets representing different applications. We considered MNIST [18] 

as an instance of a simple, yet plausible image-based application. Secondly, we consider the Google Speech 

Commands v2 dataset with 10 classes for Keyword Spotting (KWS) [63], taken as an instance of an audio-

based application. For KWS, we used 13 Mel-Frequency Cepstral Coefficients (MFCCs) after applying Short-

Time Fourier Transformation with a window size of 25ms and a hop size of 16ms, which gives 793 (61 × 13) 

features for a 1-second sample. Finally, we utilized HAR [32], which classifies activities using accelerometer 

data and represents an example of a wearable application.  

Model Structures. Table 2 presents the model structures used in our evaluations. As we present in Section 

5.1.3, we compressed Fast-Inf models using the pruning approach described in Section 3.3.2 to fit them in 

the 256 kB FRAM of the MSP430FR5994 MCU. Similarly, we employed our unstructured pruning approach to 

compress and create sparse versions of the DNN models in this table. 

Table 2: The structures of DNNs and Fast-Inf models in evaluations. “D” stands for depth, “L” stands for 
leaf width, “C” and “F” indicate convolutional and fully connected layers, respectively (with their size). In 
DNN models, batch normalization and max pooling layers are used after each C layer; dropout layers are 

added after F layers. 

 
 

5.1 Evaluation via Simulations 

In this section, we will study the properties of Fast-Inf, comparing them with those of the baseline algorithm, 

i.e., FFF from [8]. During some of the comparisons, we will refer to the baseline approach as “Vanilla FFF”, to 

remark that our approach is an extension of the baseline FFF algorithm, and thus it belongs to the same class 

of algorithms.  

5.1.1 Evaluation Metrics. For the evaluation in simulation, the main evaluation metrics were: (1) the Test 

accuracy, and (2) the number of Floating-point Operations Per Second (FLOPs). For the former, we measured 

the accuracy of each model on the test set, obtained after the training and discretization processes. For the 

latter, we measured the average number of floating-point operations performed by each model, assuming 

that all the leaves have uniform probability.  

5.1.2 Results. We compare the performance of Fast-Inf (uncompressed models) versus vanilla FFF models 

(trained using the original training approach described in [8]) in Figure 2. We performed training with the 

following parameters: depth ∈ {2, 3, 4}; leaf width ∈ {4, 8, 16, 32}; 10 epochs; and a 𝑤𝐿2 of 0.01 for MNIST 

and HAR, 0.001 for KWS, as preliminary experiments showed that larger 𝑤𝐿2 were hindering learning in KWS. 
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Note that, for each configuration, we performed 10 runs to assess the statistical repeatability of our method. 

From the figure, we can observe that the models trained using Fast-Inf often exhibit better performance than 

that of vanilla FFF models. The Wilcoxon rank-sum test (with 𝛼 = 0.05) confirms the superiority of our method 

in all scenarios (aggregating all accuracies for each dataset). Moreover, in most cases, the test accuracy 

achieved by Fast-Inf models seems to be less dependent on the leaf width than for FFF models. This is an 

extremely convenient feature, as it allows us to train models with small leaves, which use less memory and 

have faster inference time than models with larger leaves. 

In Figure 3, we compare the impact on memory consumption and test accuracy of our proposed truncation 

mechanism. Here, we observe two interesting behaviors. Firstly, we note that, especially for models with 

larger leaves, Fast-Inf is able to significantly reduce memory consumption while vanilla FFF models cannot. 

Secondly, Fast-Inf does not suffer from large accuracy drops like FFF, confirming our intuition that the L2 loss 

helps in “specializing” the leaves towards the prediction of single classes. Last but not least, not only in some 

cases do we observe that the test accuracy of the models after truncation is comparable to those using the 

full network, but we also observe that it is sometimes higher. This indicates that the leaf truncation 

mechanism may prevent overfitting. 

Figure 2: Test accuracy vs leaf width of vanilla FFF models vs Fast-Inf models. 
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Figure 3: Test Accuracy vs memory consumption for various depths (left: 2, center: 3, right: 4), computed 

on the MNIST dataset. Note that, in the depth 2 scenario, we could not truncate any leaf from vanilla FFF 

models. 

5.1.3 Compression of Fast-Inf models. Here, we will study the compression of Fast-Inf models, both from the 

point of view of leaf truncation and pruning.  

Leaf Truncation Mechanism. In Figure 4, we show the impact of the L2 loss on the number of leaves truncated 

on the trees. Note that, in our experiments, we fix 𝜉 = 0.7 (unless stated otherwise). We observe that the 

introduction of the L2 term allows us to increase the number of leaves that can be truncated, confirming that 

our new loss allows us to perform faster inference. In Figure 5, we show the sensitivity of the models to the 

truncation threshold 𝜉. For the three values of depths, we observe that large leaves can be truncated at lower 

threshold values without any substantial loss in performance. This behavior may indicate that models that 

are too large tend to “overuse” some leaves and “underuse” others, which may negatively impact inference 

time. This also tells us that smaller models, besides using less memory, may be more efficient when using 

truncated inference. Moreover, we find that 𝜉 = 0.7 can be a good threshold as it minimally impacts accuracy. 

However, at the extreme edges, we can avoid using the threshold and decide whether to perform truncated 

inference or query a leaf based on power constraints.  

Unstructured Pruning. We also evaluate the performance of the depth-by-depth compression algorithm 

presented in Section 3.3.2, using as the main evaluation metric the accuracy over the model’s size reduction. 

For this analysis, we select a Fast-Inf model with depth 4 and leaf width 8 and start the compression by 

defining the target size as 32 kB. The algorithm increases, at each iteration, the sparsity constraint on the 

nodes with the same depth and larger sizes, and optimizes the model to boost the accuracy. In Figure 6, we 

show the accuracy at each compression iteration. It can be clearly seen how this approach maintains, during 

compression, stable accuracy values up to significantly reduced dimensions.  

Combined Pruning and Truncation. To minimize energy consumption, memory usage, and inference time, 

we combined leaf truncation and pruning, to achieve maximum compression. These two mechanisms are 

complementary and allow for massive savings in terms of both FLOPs and memory, as shown by the “T+C” 

points in Figure 7. 5.1.4  

Comparison with the state of the art. In Table 3, we compare our results with those obtained using the 

baseline FFF [8] approach and the convolutional DNNs shown in Table 2. We also train FCN models with 

knowledge distillation [27], to study the time-memory trade-off between Fast-Inf and a model compression 

approach. We use a large FCN as the teacher model and a small FCN as the student model. The hidden layer 

width of the student model is set equal to the leaf width of the FFF model for the same task. This ensures 

that the inference times of both FFF models and distilled FCNs are comparable. We observe that Fast-Inf 

achieves comparable or even better performance w.r.t. the baseline approach from [8]. 
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Figure 4: Impact of the L2 loss on the no. of leaves truncated at depth 2 (left), 3 (center), and 4 (right), 

computed on the MNIST dataset. In the experiments with depth 2, a significant portion of the trees could 

not be truncated due to the fact that the total number of leaves in the tree was small. 

 

 

 

Figure 5: Test accuracy for various values of 𝜉 at depth 2 (left), 3 (center), and 4 (right), computed on the 

MNIST dataset. 

5.2 Evaluation on Real Hardware 

We evaluated Fast-Inf by using the MSP430FR5994 launchpad. We ran the uncompressed Fast-Inf models 

(referred to as baseline models), and the compressed Fast-Inf and DNN models on this MCU intermittently 

and compared their performances considering several metrics. It is worth mentioning that baseline Fast-Inf 

models are, in general, more accurate than Fast-Inf models. Therefore, if baseline models already fit in 

memory, it is also desirable to execute them to obtain more accurate predictions. This is why we involved 

baseline HAR and MNIST Fast-Inf models in our evaluations.  

Hardware Setup. We used the MSP430FR5994 MCU at 1 MHz. For repeatability, we emulated controlled 

power failures by utilizing a brown-out-reset mechanism of MCU every 5 ms to 20 ms. For the energy 

harvesting scenario, we used the Powercast TX91501-3W-ID power transmitter [55] and the P2110-EVB 

power harvester [54] equipped with a 1mF onboard energy storage supercapacitor. 

 

 

          
       

Table 3: Comparison of CNNs, FCNs, FFF, and Fast-Inf. 
“(C)” stands for compression with an approximate size 
of 60 kB. “D” stands for distilled FCNs. “(∗)” indicates 
that, to use CNNs, we had to adopt a different pre-  

Figure 6: Gradual compression of a MNIST model: 
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processing technique (i.e., based on spectrograms). 

  

accuracy is stable up to a significant reduction in 
size. 

Figure 7: Memory size vs FLOPs for Fast-Inf models 
with depth 4 on the MNIST dataset. “Full” stands 

for the full Fast-Inf model, “T” stands for the 
model after truncation, and “T+C” stands for the 

model after truncation and compression. 

Platform Specific Implementations. We implemented the compressed versions of the DNN model structures 

in Table 2 using Sonic [24], the de facto DNN-based intermittent inference engine for the extreme edge. The 

Sonic inference engine is based on the Alpaca [49] task-based model. We implemented Fast-Inf models using 

the Fast-Inf inference engine, which is also a task-based runtime. It is worth mentioning that Sonic optimized 

its models through a neural architecture search process, during which it explored different configurations by 

applying separation and pruning techniques to compress these networks and optimally balance their 

inference energy and accuracy considering the MSP430FR5994 platform. Using these optimal networks and 

the same target platform as in Sonic allowed us to present a systematic, rich, and fair comparison to state-

of-the-art DNN models targeting battery-free systems. 

 
Figure 8: Real hardware evaluation setup. 

Table 4: Time overheads (sec) and number of tasks 
of Sonic and Fast-Inf inference engines.

 

 

5.2.1 Evaluation Metrics 

We considered the following evaluation metrics. (1) Runtime Overhead is the time overhead introduced by 

the intermittent computing engine to execute models intermittently, in particular, due to the 

backup/recovery operations. (2) Execution Time and (3) Energy Consumption represent the time and energy 

required to complete the whole model execution. (4) Memory Overhead presents the memory requirements 

for storing the inference engine code, the model parameters, and the memory space for maintaining 

intermediate computational results.  

5.2.2 Results 

We present first our results collected during the continuously powered executions of our models as well as 

their intermittent execution under controlled power failures at uniform intervals. 
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5.2.3 Inference Engine Overheads  

To understand how much backup/restore overhead is introduced by the Sonic and Fast-Inf  inference engines, 

we implemented the “Pure C” versions of the DNN and Fast-Inf models that have no backup/restore 

overhead. We executed all models continuously without any power failures. We subtracted the execution 

time of Pure C versions from the execution time of the Fast-Inf and Sonic models to obtain the runtime  

  

Table 5: Total execution time (sec) and energy consumption (mJ) during the continuous and intermittent 

execution.

 

overhead introduced to run them intermittently, as presented in Table 4 under the “Runtime Ov.” column. 

Thanks to ultra-efficient Fast-Inf models and their energy-efficient and lightweight characteristics, Fast-Inf 

inference engine has a minimal runtime overhead that is up to 1020× smaller than that of the Sonic. This is 

also due to the small number of tasks required to be implemented to run the models, i.e., the Fast-Inf 

inference engine requires only 5 tasks, while the Sonic DNN engine requires 22 tasks to be implemented. 

Total Execution Time and Energy Consumption. We evaluated the execution time and energy consumption  

Table 6: Detailed execution time profile of the 
nodes and leaves in Fast-Inf models.

 

Table 7: Memory overhead (in kB) of Fast-Inf and 
compressed base-line models. (Results for FCNs 
were similar to those of DNN and we omitted 

them due to space limitations)

 

of Fast-Inf and Sonic models during both continuous (Cont.) and intermittent (Int.) execution. Our results are 

presented in Table 5. We also included FCN models mentioned in Section 5.1.4 in this table. We observe that 

Fast-Inf models can reduce execution time by up to 608× compared to that of Sonic DNNs, respectively. These 

results are also aligned with the measured energy consumption. Fast-Inf can decrease energy consumption 

by up to 538× compared to Sonic DNNs. The execution time and energy consumption of Fast-Inf models are 

slightly higher compared to FCN models obtained via knowledge distillation, but the accuracy of Fast-Inf 

models is significantly better. Detailed Overheads of Nodes and Leaves. The execution time of each branch 

in a Fast-Inf model is affected by the sparsity of the weights of the nodes and the leaves. Therefore, it takes 

a different amount of time for the Fast-Inf inference engine to perform sparse matrix multiplications and run 

each node and leaf. Table 6 shows the minimum, maximum, and average computation times for the leaves 

and nodes in Fast-Inf models. Note that nodes and leaves have a constant execution time in the baseline 

model since they receive the same inputs and perform the same amount of MAC operations. Besides, 

depending on the level of the sparsity, the compressed model representation might introduce a negligible 
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computational overhead for the inner nodes. Meanwhile, the computation time for the leaves is significantly 

reduced, e.g., up to 4× for MNIST. 

5.3 Memory Footprint and Runtime Buffer Requirements. 

We analyzed the .text and .data segments of the target binary to assess the memory footprint of the models 

and summarized our measurements in Table 7. Compared to Sonic inference engine, Fast-Inf inference 

engine, designed to operate with only 5 tasks, significantly reduces the code 

    

Table 8: Runtime buffer requirements. 
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6 Conclusions and Discussion 

Even though Fast-Inf brought many benefits for the embedded intelligence on the extreme edge, our 

experience has also brought to light that there remains ample room for exploration and advancement 

regarding FFF networks. Missing convolutional layers. One limitation of our current approach is that, while it 

performs effectively on time series data (such as HAR) or properly pre-processed speech data (such as KWS), 

when it comes to handle image classification its performances can be limited by the lack of convolutional 

layers, which as known allow for the possibility of recognizing and composing simple, local patterns 

(obviously, this also holds true for the other non-convolutional models, such as FCNs and the original FFF). 

This ability is crucial to achieving state-of-the-art performance in complex computer vision tasks. While the 

results on a simple vision task as MNIST are encouraging, further investigation is needed to understand how 

to unroll (and prune) the convolutional operations in an effective way into the FFF architecture, e.g., based 

on multipartite graph representations [15]. Input Size Overhead. One of the main sources of the 

computational overhead of Fast-Inf models is the input size. The larger the input, the more computations 

must be performed. We plan to explore solutions such as pre-computing high-level input features, inserting 

pooling layers, using convolutional filters (as done e.g. in [16]), or using dimensionality reduction techniques 

such as PCA. 

6.1 Hardware Acceleration 

Fast-Inf is a software-based and portable approach, but it can be further enhanced by incorporating hardware 

acceleration to improve inference efficiency. The MSP430FR series MCUs, equipped with the Low Energy 

Accelerator (LEA) [24, 35, 44], offer energy-efficient vector based signal processing. LEA can be leveraged to 

offload MAC operations, especially in the leaf nodes of Fast-Inf models, to exploit parallelism and energy 

efficiency. However, LEA loses its computational state when there is a power failure, which requires repeated 

hardware reconfiguration and data transfer between volatile and non-volatile memory. Moreover, the 

sparsity introduced by the compression provides significant benefits for the software implementation, 

however, it introduces significant challenges for hardware acceleration [59]. We plan to explore hardware 

acceleration of Fast-Inf models in the future. Other Compression Approaches. In Fast-Inf models, there is a 

trade-off between accuracy and memory consumption (as they are both related to the depth of the tree). 

Future work should aim to reduce the memory footprint of deep Fast-Inf models, to allow for larger depths 

and better accuracy on the extreme edge. Finally, future work should also focus on improving leaf utilization 

in Fast-Inf models. 
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2. Appendix - Improving Fast-Inf performance on Cifar-10     

Fast-Inf has an exceptional improvement in inference time. Yet, only being fast is never enough. In addition 

to that, we need to show that we can use Fast-Inf on real-world applications with sufficient performance. For 

that purpose, we explored an approach with autoencoders to improve the accuracy of Fast-Inf on Cifar-10, 

which is an image classification task. 

Feedforward neural networks (FFs) are less complex than convolutional neural networks (CNNs). Yet, learning 

local features for FFs  is more difficult than for CNNs. To overcome this issue, we proposed a pipeline using a 

convolutional autoencoder (CAE) for learning these local features and using only the encoder part of it during 

the inference. 

Using the encoder of a pre-trained CAE has several advantages. In addition to their improvement on the 

performance, CAE also has a low number of parameters so that they do not introduce a significant memory 

footprint. CAE is also beneficial for on-device learning since it often does not require training with new real-

time data. Yet, there is a trade-off. The complexity of the overall process increases. CNNs are computationally 

very expensive even though they don’t have much memory footprint. Still, one can trade-off accuracy 

towards complexity. For that reason, we have introduced several CAEs with varying complexities to analyze 

the complexity-accuracy trade-off. Listing 4 shows several possible architectures and  the code for generating 

the CAE after specifying the architecture. One can easily extend that code for implementing a neural 

architecture search (NAS) algorithm using CAE and Fast-Inf for finding an optimum architecture for the 

encoder with respect to accuracy.. We will investigate this approach in our later research. 

 

Listing 4: Code for generating the CAE based on the configuration 
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Figure 9: Pre-training CAE and using encoder side during training Fast-Inf and inference 

Figure 9 shows the overall process. After pre-training CAE (Figure 9.a), we only use encoder-side during 

training and inference of Fast-Inf. Note that encoder is not re-trained during training training of Fast-Inf 

(Figure 9.b). As we mentioned, such an architecture is also beneficial for on-device learning since we only 

train it online so only the activations and gradients of Fast-Inf needs to fit inside a device’s memory for 

backpropagation and not the ones from the encoder. 

Table 9. Experiment Results 

Model Accuracy (%) No. Parameters (Million) MACs (Million) 

Fast-Inf 38.4 0.84 0.05 

Fast-Inf + Enc1 62.8 1.06 0.41 

Fast-Inf + Enc2 65.1 1.31 0.84 

Fast-Inf + Enc3 66.4 1.87 1.51 

Fast-Inf + Enc4 66.8 2.53 3.86 

 

Table 9 shows the performance measures of our experiments during inference.  We used two complexity 

measures, the multiply-accumulate operations (MACs) and the number of parameters, both with the encoder 

and Fast-Inf. We observe that even the smallest encoder improves the accuracy significantly thanks to the 

fact that convolutional layers extract local features better than fully-connected layers. In addition, increasing 

the size of the encoder improves the performance as expected, yet, introducing significant complexity. 


